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ABSTRACT
Loneliness has long affected the elderly community. This issue is
significantly worsened by the social isolation resulting from the
COVID-19 pandemic. To address this pressing issue, we employed
a sensor-based methodology to predict loneliness and potentially
inform interventions. We deployed sensors in the residences of 22
elderly participants from US and Japan, gathering daily activities
data through 22 sensor features. Given the extensive feature set, we
identify the most effective sensors to ensure unobtrusiveness while
upholding privacy. Regression analysis of these features revealed
that our best-performing Random Forest model achieved an 𝑅2

value of 0.86, on par with existing literature. In addition, we found
that the sleep mattress sensor and temperature-humidity sensor
were particularly indicative of loneliness. In summary, our research
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1 INTRODUCTION
The COVID-19 pandemic has exacerbated elderly loneliness and
social isolation, leading to significant deterioration in their men-
tal and physical well-being. This not only affects individuals but
also poses challenges for healthcare systems and societies globally
[8, 36, 38, 42]. To address this issue quantitatively, HCI researchers
have turned to various sensing modalities to detect loneliness in
the elderly [9, 15]. Sensor data makes it possible to build predictive
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models of loneliness, paving the way for timely interventions. How-
ever, introducing multiple sensors requires careful practical consid-
erations, especially given the varying degrees of tech-familiarity
among the elderly. This study aims to streamline this process by
pinpointing the most effective sensing modalities for predicting
loneliness, allowing for optimized sensor deployment, intelligent
design and placement. The goal is to ensure a less intrusive and
privacy-respecting experience for the elderly.

Our study is conducted in two distinct cultural contexts: the
United States and Japan [23, 37]. We collect data from 22 partici-
pants across these regions over a period of five months, using a
sensor suite composed of seven sensor types [22]. Our initial data
analysis on user demographics data confirms that social isolation
leads to increased feelings of loneliness among the elderly. From
the sensor data, we extract 22 features that best capture the daily
activities of the elderly. Our regression analysis of these features
shows that the Random Forest model outperforms the other models
tested, achieving an 𝑅2 value of 0.86. Additionally, features from
non-invasive sensors, namely the sleep mattress and temperature-
humidity sensors, emerge as the most predictive, thereby signifi-
cantly reducing the number of sensors required.

Additionally, our research sheds light on the challenges and
opportunities of elderly technology adoption. We share deployment
experiences categorized by engineers, coordinators, and study team
roles. Based on these insights, we recommend strategies to optimize
sensor deployment and user experience for the elderly. Future HCI
researchers can leverage this guidance when organizing teams for
similar studies.

Our contributions are outlined as follows: (1) Cross-Cultural
Deployment: We deployed a passive sensing system for seniors
in both the US and Japan, demonstrating its unique adaptability to
diverse cultural contexts. (2) Key Sensors Identification:We iden-
tify key sensors for detecting loneliness using regression analysis,
drawing from combined data from the US and Japan; (3) Elderly
Interaction with Technology: We provide insights into how the
elderly interact with technology, emphasizing challenges in sen-
sor maintenance and potential avenues to enhance usability. The
subsequent sections of this paper encompass a literature review
in Section 2, detailed sensor importance analysis in Section 3, dis-
tilled insights in Section 4.2, discussion on limitations and potential
interventions in Section 5, and conclusions in Section 6.

2 LITERATURE REVIEW
Sensor Modalities in Elderly Loneliness Assessment. Sensor tech-

nology has recently been leveraged to assess elderly well-being,
specifically regarding loneliness and social isolation over the past
decade in European countries such as Sweden [7], Norway [41], and
Denmark [47]. Motion sensors capture mobility patterns that reflect
mental health and sociability nuances [19, 21, 24]. Sleep quality is
gauged using devices like Fitbit and sleep mattress sensors [16].
Wearables, with step counters or gyroscopes, track physical move-
ments, indicating activity levels [12]. Contact sensors unobtrusively
monitor activities such as cooking and hygiene, hinting at poten-
tial social isolation [19]. Passive sensors, like home appliance and
temperature-humidity sensors, provide further insights [43]. While
numerous sensors have been deployed to gauge elderly loneliness,

there is insufficient research comparing their effectiveness across
various cultural settings [18]. In addition, the literature on the opti-
mization of sensor deployment and the enhancement of usability
for the elderly is relatively sparse.

Feature Importance Analysis. Feature importance techniques vary
from model-dependent to model-agnostic methods [14]. While
model-dependent methods are intrinsic to specific models, model-
agnostic ones like Permutation Importance (PFI) [10, 17] and SHap-
ley Additive exPlanations (SHAP) [35] offer universal applicability.
These techniques can provide insights either globally, across all
observations, or locally, for specific data points. Our study empha-
sizes global model-agnostic methods for broad relevance, leveraging
regression model coefficients, PFI, and SHAP values for compre-
hensive feature significance evaluation.

3 METHODOLOGY
Upon obtaining IRB approval, we collect data from 22 participants
(17 from the US and 5 from Japan) from April to September 2023,
yielding 140 weeks of data on 22 features, paired with weekly
UCLA loneliness scores [39]. This data is gathered from seven
distinct sensor types: motion, contact, BLE tag-based proximity,
temperature and humidity, power meter, sleepmattress, and activity
trackers [2–4].We first describe our pre-processingmethods and the
features extracted for each data type. Then, we provide a descriptive
summary the data collected, together with preliminary correlation
analysis. Finally, we discuss feature selection outcomes from three
regression models.

3.1 Data Collection Procedure
This subsection delineates the procedure for data collection, detail-
ing the setting, participant recruitment, and ethical protocols.

Settings. In the US’s greater Philadelphia area, participants were
independent seniors living in senior apartments. In Japan’s Shikan-
odai community, they resided in private homes with diverse liv-
ing arrangements. Data collection began with a baseline session
where qualified research coordinator gathered demographic data
and administered the Mini-Mental State Examination (MMSE) to
participants. After obtaining consent, tablets were provided for
completing baseline and weekly surveys (Figure 4). Participants
were strongly encouraged to complete the weekly 20-item UCLA
loneliness survey. Concurrently, the study team installed sensor
suites while participants answered baseline questions.

Recruitment. Recruitment was facilitated through community
sessions, leading to the voluntary participation of 17 individuals
from the U.S. with no dropouts noted to date of this work. In Japan,
six community leaders have been recruited, with efforts to enlist
more underway. The evaluation of sensor data validity is in progress
and will be reported in the full data analysis.

Ethical Considerations Ethical compliance was ensured by a
coordinator who thoroughly explained the consent form to partic-
ipants in a baseline session before any sensor installations were
carried out.
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3.2 Sensing Feature Processing
Motion and Contact Sensor. For these sensors, we initially ex-

tract records indicating motion detection or an open contact sensor
status. These records are sorted by timestamp, and only those sepa-
rated by at least five minutes are retained to minimize redundant
event reporting. Subsequently, daily movement or door opening
occurrences in specific areas (entrance, kitchen, bathroom) are de-
termined by counting daily records from the respective sensors,
which yields six features in total from motion and contact sensors.

BLE Tag-Based Proximity Sensor. For our BLE tag-based sensor,
we smooth the RSSI signal using a moving average over 300 records,
then classify each timestamp as outdoor, indoor, or unsure. RSSI
signals stronger than -55 dBm are labeled as indoor, while those
weaker than -88 dBm are categorized as outdoor, based on estab-
lished thresholds [32]. Signals falling between these thresholds are
labeled as "unsure", potentially indicating transitional moments of
entering or exiting the apartment. A missing RSSI signal suggests
the participant has left the apartment.

Continuous outdoor readings are identified from consecutive
unsure-to-outdoor transitions.We count daily outing events, exclud-
ing days with more than ten events to filter anomalous readings.
Durations of outings are determined from consecutive outdoor-
classified records. Only outings longer than a minute are consid-
ered. We then match outing events with durations using times-
tamps, yielding the features outing frequency (‘tag_cnt’) and event
duration (‘tag_duration’).

Temperature and humidity sensor. For these sensors, we calculate
weekly averages of the readings. Additionally, we identify concur-
rent peaks in temperature and humidity to detect showering events,
which are characterized by peaks that occur no more than two min-
utes apart. In total, three features are extracted: mean temperature,
mean humidity, and the number of showering events (‘show_cnt’).

Power meter sensor. For the smart power plug, which measures
power usage, we connect it to an elderly individual’s television.
Given the occasional fluctuations in the TV’s power consumption,
we employ the K-means algorithm [27] to segment the power read-
ings into two clusters. Among these, the cluster with the higher
centroid value is interpreted as ‘TV on’, while the other is treated
as ‘TV off’. We then determine the ‘daily total TV hours’ feature
(‘tv’) by totaling the number of ‘TV on’ instances within a day.

Sleep mattress sensor. We choose seven key metrics from stan-
dard sleep medicine literature out of a possible 27 variables [25].
Additionally, we incorporated two nap metrics by counting naps
recorded before 6 PM. The nine metrics we utilized are defined as
follows:

• REM Episodes: This measures the number of REM sleep
phases.

• Sleep Efficiency: The ratio of total main sleep time to the
time spent in bed.

• Sleep Latency: The time it takes to fall asleep once in bed.
• Total Sleep Time: The cumulative time spent during main
sleep.

• Total Time in Bed: The entire duration spent in bed during
main sleep.

• Wake-up Latency: The time taken after waking up before
leaving the bed.

• WASO (Wakefulness After Sleep Onset): The time spent
awake in bed after initially falling asleep for the night.

• Nap Time in Bed: The entire duration spent in bed during
nap.

• Nap Sleep Time: The cumulative time spent during nap.
We calculate the weekly mean of these sleep metrics, omitting days
with missing data.

Activity tracker. We distributed activity trackers to elderly par-
ticipants, offering them the option to wear these devices. From
these trackers, we collected daily step count data and calculated
the weekly average, excluding any days when the tracker was not
worn by the participants.

4 RESULTS
4.1 Quantitative Results: Data Analysis
Descriptive Statistics Table 1 summarizes the statistics of lone-
liness and social isolation. The average UCLA Loneliness score
for the U.S. cohort is 46.41, indicating moderate loneliness with
considerable variance (standard deviation 14.83). The mean Lubben
Social Network Scale (LSNS) is 15.47, suggesting low social isola-
tion risk, though four participants score below 12, indicating higher
risk. The Japanese cohort shows milder loneliness (average UCLA
40.40, standard deviation 6.66) and no significant social isolation
risk (minimum LSNS 12). With only four data points from Japan,
we used Cohen’s 𝑑 (Table 3) to compare US and Japan datasets. All
sensor features show absolute 𝑑 values below 0.8, indicating no
significant differences, allowing us to combine both datasets for
further analysis.

Our overview of 22 sensor features (Tables 4, 5) reveals distinct
patterns: movement events are more frequent than door openings.
On average, entrance door interactions occur five times daily, while
motion sensors record about 16.88 movements per day in the same
area, likely influenced by pet activity. Tag sensor data shows the
elderly leave their homes 3.41 times daily for an average of 41.86
minutes. The daily step count varies widely from zero to 7783, av-
eraging 1039.64 steps, with a median of 505.71 indicating sporadic
high-activity days. Sleep data indicates an average of 6.47 hours
sleep per night with 89% efficiency, 20 minutes to fall asleep, and
39 minutes to the first wake episode. Napping varies greatly among
participants. Demographically (Table 2), our sample has an equal
number of male and female participants, mostly retired, with ed-
ucation levels mostly at or above bachelor’s, including six with
advanced degrees.

Baseline Correlation Analysis Our analysis begins with the
Pearson’s (P) and Spearman’s (S) correlations [31] assessment of the
baseline survey data, which includes demographics, the LSNS, and
blood pressure metrics. Pearson’s correlation measures the linear
relationship between two variables, while Spearman’s correlation
assesses the monotonic relationship based on their ranks [40]. The
result is summarized in Table 2. Notably, LSNS negatively correlates
with UCLA in both US and Japanese samples. The finding suggests
an increased social isolation often amplifies feelings of loneliness.
In the US cohort, gender appears to influence loneliness, with male
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UCLA LSNS
US Japan US Japan

mean 46.41 40.40 15.47 17.60
50% 46.50 43.00 14.00 15.00
std 14.83 6.66 7.76 6.19
min 20.00 30.00 3.00 12.00
max 73.00 47.00 27.00 28.00

Table 1: UCLA Loneliness Scale (UCLA) and Lubben Social
Network Scale (LSNS) Statistics

US Baseline Japan Baseline
P S P S

Age 0.17 0.26 -0.30 -0.05
Gender 0.38 0.36 - -
Education years -0.02 0.01 -0.82 -0.22
Job status -0.14 -0.10 - -
LSNS -0.73 -0.70 -0.91 -0.67
Diastolic blood pressure 0.05 0.14 0.29 0.20
Systolic blood pressure 0.10 -0.05 -0.54 -0.56

Table 2: Pearson’s (P) and Spearman’s (S) correlation coeffi-
cients between the baseline survey data and UCLA, the rela-
tively significant correlations are in bold.

Figure 1: Top Pearson’s and Spearman’s correlation coef-
ficients between sensor features and the UCLA loneliness
scores.
Demographic Total (N) Percentage (%) Male Female

Age Group:
65-70 7 31.82% 3 4
71-76 8 36.36% 2 6
77 or above 7 31.82% 6 1
Education Years:
Bachelor’s 16 72.73% 6 10
Master’s and beyond 6 27.27% 5 1
Occupation:
Retired 21 95.45% 10 11
Other 1 4.55% 1 0

Figure 2: Participant demographics summary.

participants exhibiting an average UCLA 21.84% higher than that
of the female participants. In the Japanese sample, education years
and systolic blood pressure may be inversely related to loneliness.

Sensor Correlation AnalysisWe evaluated the Pearsons’(P)
and Spearman’s (S) correlation between weekly sensor averages
(Figure 3) and weekly UCLA loneliness scores (Figure 1) similar
to the baseline correlation analysis. The inter-sensor correlation
assessment aids in addressing multicollinearity and potentially
reducing feature count. Assessing sensor-loneliness correlations
provides a foundational insight for subsequent regression analysis.
Only relatively significant correlations are depicted for clarity in
Figure 3 and Figure 1.

Figure 3 reveals an evident correlation between total nap time
in bed and sleep efficiency (P = 0.98, S = 0.94), step counts and total
nap time (P = 0.95, S = 0.96), implying that more activity might lead
to longer rest periods. Movements in the bathroom and near the
entrance are related (P = 0.72, S = 0.66), possibly due to common
senior residence layouts. Humidity and temperature, both measured
in the bathroom, are correlated (P = 0.84). Interestingly, kitchen
contact sensor activity positively correlates with total sleep time (P
= 0.71) and bed duration (P = 0.70), suggesting that more kitchen
activity may lead to extended sleep. Researchers might consider
excluding activity trackers and kitchen contact sensors, given their
high correlation with sleep mattress sensor metrics.

From Figure 1, we observe that REM episode counts, humidity
levels, tag counts, and TV durations emerge as better loneliness
indicators than the rest, each with correlations exceeding 0.35. No-
tably, a rise in REM episodes points to increased feelings of loneli-
ness [20, 44], which could be caused by sleep disorders and lower
sleep quality [33, 48]. On the other hand, higher humidity levels,
which might suggest regular showers, and more outdoor activity,
as tracked by tag counts, are tied to lower feelings of loneliness.
Interestingly, extended TV hours negatively correlate with loneli-
ness, suggesting entertainment might counter such feelings in our
elderly cohort.

Regression Models and Feature Selection To predict weekly
loneliness levels, we employ three regression models: Linear Re-
gression [28], Random Forest [29], and Elastic Net Regression [26],
chosen for their efficacy in feature selection. We perform five-fold
cross-validation with sensor features as predictors and the weekly
UCLA loneliness scores as the response. The results are assessed
via metrics like coefficient of determination (𝑅2), Mean Absolute
Error (MAE), Explained Variance (EV), and Mean Squared Error
(MSE), as shown in Figure 6. Notably, the Random Forest model,
with an 𝑅2 of 0.86, matches state-of-the-art (SOTA) results from
previous UCLA loneliness score studies [6, 46]. Nevertheless, we
acknowledge the larger MSE observed in our study, likely attribut-
able to the extensive range and variance of the target variable in
our dataset, which is consistent with the known sensitivity of MSE
to the scale of the data.

From our five-fold cross-validation, we highlight the best-
performing fold, using regression model coefficients, permuta-
tion importance (PFI) [5], and SHapley Additive exPlanations
(SHAP) [35] to gauge feature importance. For the Random Forest
model, we refer to the Gini importance (Gini) [34], represented as
the ‘feature importance’ in the sklearn library [1]. Features were val-
idated for statistical significance using a p-value threshold smaller
than 0.05.

Following the previous sensor correlation analysis, we filter out
less significant sensor features during feature selection, especially
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Feature Value Feature Value Feature Value Feature Value

kitchen_movement 0.03 tv -0.02 waso -0.35 sleep_latency -0.62
bathroom_movement 0.00 temperature 0.02 sleep_efficiency 0.18 wakeup_latency -0.72
entrance_movement -0.01 humidity 0.07 total_sleep_time 0.19 nb_rem_episodes 0.28
kitchen_contact 0.42 shower_cnt 0.01 nap_total_timeinbed -0.55 total_timeinbed -0.00
bathroom_contact 0.00 tag_cnt -0.01 nap_total_sleep_time -0.48 steps -0.38
entrance_contact 0.04 tag_duration -0.01

Table 3: Cohen’s 𝑑 values for feature difference between US and Japan data. All features have absolute values smaller than 0.8,
indicating no significant difference.

Motion Sensor Contact Sensor Tag TV Temperature Humidity Shower
Kitchen Bathroom Entrance Kitchen Bathroom Entrance Count Duration Hours Count

mean 15.01 10.51 16.88 4.44 1.46 5.00 3.41 41.86 9.31 77.44 55.50 0.32
50% 15.00 10.00 16.00 2.00 0.00 4.00 3.00 4.00 7.13 77.61 55.10 0.00
std 7.99 6.22 9.35 5.93 2.52 4.19 2.28 77.77 8.29 3.06 9.94 0.72
min 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.04 0.00 65.98 30.14 0.00
max 42.00 38.00 50.00 37.0 15.0 20.0 9.00 355.06 34.98 88.95 85.40 4.00

Table 4: Basic sensor statistics.
Steps WASO (h) Sleep Wakeup REM Total Time Sleep Total Sleep Nap Time (h) Nap Sleep (h)

Latency (h) Latency (h) Episodes in Bed (h) Efficiency Time (h) in Bed (h) Time (h)

mean 1039.64 0.65 0.33 0.03 2.82 7.21 0.89 6.47 1.10 0.77
50% 505.71 0.58 0.30 0.02 2.57 7.10 0.90 6.52 1.28 0.82
std 1174.31 0.48 0.16 0.04 1.51 0.87 0.06 0.88 0.81 0.66
min 0.00 0.00 0.13 0.00 0.00 0.50 0.48 0.28 0.00 0.00
max 7783.00 3.71 1.77 0.71 8.00 12.48 0.97 9.23 6.88 4.47

Table 5: Basic sensor statistics continued.

Figure 3: Heatmap for sensor correlations, where upper triangle is Pearson’s correlation coefficient and lower triangle is
Spearman’s correlation coefficient.
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(a) Weekly survey before completion.

(b) Weekly survey interface.

(c) Weekly survey after completion.

Figure 4: Screenshots for iCareLoop tablet app

when they correlate with more important features. Figure 5 depicts
these results from the top-performing Random Forest model, with
p-values annotated on each bar. Sleep mattress sensor metrics, like
sleep efficiency and total sleep time, emerged as the most important.
Shower count and humidity, from the temperature-humidity sensor,
and door opening frequencies, from the entrance contact sensor,
also appears to be valuable in loneliness prediction. Interestingly,
all these sensors are non-invasive in nature.

In sum, our feature selection results derived from regression
models consistently corroborate with our sensor correlation analy-
sis, underscoring the predictive value of sleep mattress sensors and
temperature-humidity sensors for assessing loneliness. By solely
utilizing these two sensors, as indicated by ‘Random Forest Re-
duced’ in Table 6, we achieve performance comparable to SOTA
literature. On the other hand, BLE tag-based sensor and power me-
ter sensor are not primary contributors in the regression analysis,
the entrance contact sensor display notable importance instead.
Moreover, our study indicates that non-invasive sensors can effi-
ciently gauge elderly loneliness, outperforming activity trackers
within our chosen sensor suite.

In future studies targeting the elderly, we recommend the use
of a minimal number of non-invasive sensors to capture crucial
data features, thereby minimizing intrusion. Based on our analysis,
researchers might consider employing sensors such as the sleep

Figure 5: Feature importance of Random Forest model,
with p-value annotated next to each bar.

Model 𝑅2 MAE EV MSE

Linear Model 0.67 5.71 0.73 54.79
Random Forest 0.86 3.70 0.87 25.22
Elastic Net 0.67 5.76 0.73 54.33
Baseline 1 [6] 0.35 0.81 - 0.91
Baseline 2 [46] 0.57 4.46 0.57 5.63
Random Forest Reduced 0.78 5.75 0.78 61.74

Figure 6: Regression model performance metrics,
the best result are in bold.

mattress sensor and the temperature-humidity sensor. Our insights
serve as a guide, assisting researchers in choosing the most rele-
vant sensors that align with both the research objectives and the
preferences of the elderly participants.

4.2 Qualitative Results: Lessons learned
In our study, we categorize team duties into roles: middleware,
software engineers, research coordinators, and the study team. We
discuss challenges and solutions for each role, aiming to offer role-
specific insights for researchers working on elderly related studies
in the HCI community.

4.2.1 Insights by Middleware Engineers. Middleware engineering
covers various tasks, from sensor activation to ongoing device
maintenance in elderly participants’ residences.

Sensor Setup. The initial setup for mini PCs was lengthy and
error-prone. We streamlined this by creating a module that repli-
cates a disk image, reducing setup time from two hours to just 40
minutes. Additionally, manual entry of MAC addresses from mul-
tiple sensors pose accuracy issues. Our solution is an automated
system that outputs the needed JSON configuration for the mini
PC when fed a CSV with sensor details.

Sensor Installation. With multiple sensors per household, over-
sights were common. To address this, we implemented a double-
confirmation checklist, requiring two installation engineers to cross-
verify the setup of all devices, thereby ensuring a meticulous in-
stallation process. The diverse settings of elderly homes demand
flexibility in installation. For example, older fridges with large gaps
sometimes requires us to rethink contact sensor placements. As
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a solution, we install sensors on cupboards alternatively to moni-
tor food-related activities, addressing the need for adaptability in
real-world HCI scenarios.

Sensor Maintenance. Servicing a tech-heavy system with the el-
derly presents its own challenges, for example, we receive many
reports on accidental unplugging of mini PCs due to cleaning. Our
solution is to automate mini PCs for resilience and harnessing
remote tools like TeamViewer, making them ‘plug-and-run’. In ad-
dition, surface adherence of sensors, especially in moisture-rich en-
vironments like bathrooms and kitchens, was tricky. When optimal
placements fails, we innovatively reposition sensors and document
placements with photos, making troubleshooting more straightfor-
ward for both engineers and participants.

Our project emphasizes the use of non-intrusive sensors and
requires minimal effort from the elderly. By sharing these insights,
we aim to facilitate future HCI efforts by combining robust technical
solutions with empathetic user engagement.

4.2.2 Insights by Software Engineers and ML Engineers. Software
and ML engineers are central to the backend, developing tools and
methodologies that inform the research. Their tasks include crafting
intuitive software interfaces and refining data for valuable insights.

Survey Application Refinement. Designing for elderly users
brought UI challenges to light. Feedback emphasized larger fonts
for better readability. To cater to this, our engineers refined the
UI, optimizing font sizes, button placements, color contrasts, and
response mechanisms. This user-informed design ensured the tools
were both accessible and tailored for our elderly participants.

Data Quality and Processing. Ensuring data quality, especially in
ML-driven research, is paramount. During our data collection pro-
cess, we encountered data inconsistencies and gaps. In response, we
applied data imputation techniques and designed robust pipelines
for diverse sensor types. Partnering with domain experts, our ML
team tailored preprocessing and normalization methods. This en-
deavor accentuated the critical link between ML capabilities and
data quality.

These experiences reinforce the interdisciplinary core of HCI.
As we advance in technology, its accessibility, particularly for the
elderly demographic, remains vital.

4.2.3 Insights by Research Coordinators. Research coordinators
play a pivotal role from identifying potential participants to engag-
ing them. Beyond recruitment, they are often the first to introduce
the research agenda, setting its tone and impression.

Participant Recruitment. Recruiting from underserved older com-
munities brought challenges, including monitoring fears, data mis-
use concerns, and a fundamental distrust of research. Direct out-
reach at senior facilities were often met with lukewarm responses,
highlighting technological intricacy fears. To overcome this, we
emphasized the study’s non-invasive nature (activity tracker is
optional), promoting transparency and simplifying outreach mate-
rials.

Technology Engagement. Participant feedback revealed varied
technology comfort levels. While some participants easily adapted
to tools like tablet questionnaires, others remained apprehensive.

For example, user 2009 expressed his anxiety about using technol-
ogy: “I got a new router from Verizon and everything is screwed up ...
I’m a tech-challenged old man. I’ll try to get the tablet working, but I’m
not promising anything." Addressing this gap, we oriented partici-
pants about daily devices—activity trackers and tablets, on charging
frequency and basic functionality. Concerns about monitoring were
addressed by emphasizing the study’s ethical foundation. Coordina-
tors highlighted the research’s intent to bolster elderly well-being
rather than invade privacy. Clarifying data anonymization and the
absence of audio or video sensors helped allay many concerns.

These insights demonstrate that engaging technology-averse de-
mographics requires patience and tailored approaches. We hope our
feature significance analysis will allow future studies to reduce the
number of sensors, thereby minimizing sense of obtrusiveness. This
addresses the elderly’s concerns about monitoring while upholding
their privacy.

4.2.4 Insights by Study Team. The study team plays a pivotal role
in direct interactions with the elderly, encompassing activities such
as data collection, periodic reminders for survey completion, and
eliciting feedback.

Communicating with Participants. Engaging effectively with the
elderly cohort presents its unique set of challenges, especially when
establishing communication for baseline or troubleshooting ses-
sions. Often, the elderly may inadvertently overlook phone calls
or forget scheduled appointments. For instances, user 2001 men-
tioned:“The bigger problem is I can’t always find my phone. But I
am trying to keep it close now." To address this, we leverage a multi-
modal communication strategy that may involve text messages,
voicemails, and traditional mails. Furthermore, to minimize the
potential for missed appointments, we institute a protocol where
participants receive a reminder call one day prior to any scheduled
visit. To enhance our communication effectiveness and foster trust,
we customize our interaction methods based on the preferences
and comfort levels of the elderly. For instance, with user 2018, we
introduced the sensors during a Bingo game session, leveraging a
familiar and enjoyable setting to facilitate the introduction.

Survey Administration. Administering regular surveys to an el-
derly demographic comes with inherent challenges, primarily at-
tributable to lapses in memory. While our initial approach favored
daily surveys, the realization quickly dawned that this frequency,
albeit comprising a concise three questions, posed a demand on the
elderly. For instance, User 2004 says: “Some time I got confused with
my memory, not sure if I fill out the daily surveys and I need to con-
stantly check the tablet to confirm." In response to this challenge, we
transitioned to advocating for the completion of end-of-week sur-
veys. To ensure consistent data collection, we disseminate weekly
text reminders, prompting participants to complete their surveys.
For HCI researchers embarking on similar endeavors with elderly
subjects, it may be prudent to consider a weekly survey cadence
complemented by regular reminders.

Integrating Feedback. Feedback from our elderly participants un-
derscored a desire for more tangible insights into the collected data.
For example, User 2006 expressed: “I would be interested in visual
feedback of my data to help me better understand my activity levels."
Given this feedback, we anticipate that visualizing sleep mattress
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and temperature-humidity sensor features, delineated in previous
sections, can pave the way for crafting intuitive and simple visu-
alizations. Such visual representations could not only empower
elderly participants by providing insights into their activity pat-
terns, potentially aiding in recognizing feelings of loneliness, but
could also serve as a valuable tool for caregivers to gather insights
about the well-being of their beloved ones.

Our findings highlight the importance of a human-centric ap-
proach in HCI research with the elderly. Balancing data collection
with comfort requires careful planning and incorporation of feed-
back.

5 LIMITATIONS AND DISCUSSION
A limited sample size in the Japanese dataset and a participant pool
predominantly holding bachelor’s degrees or higher may limit the
findings of our study. Efforts to enlarge the sample size and diver-
sify educational backgrounds are underway. These steps are crucial
for deepening insights into the cultural nuances affecting partici-
pant interactions in the US and Japan. Additionally, methodologi-
cal limitations include sensor variability, reliance on self-reported
loneliness metrics, and inconsistencies in sensor installation and
activity tracker usage. Data gaps due to participants’ varied envi-
ronments and potential inaccuracies in machine learning methods
further complicate the analysis. These issues underscore the inher-
ent complexities of real-world research, necessitating careful study
design and execution. The exploration of technological solutions
like digital companions and emotion recognition in addressing lone-
liness [13, 45], while promising [30], demands rigorous evaluation
of effectiveness and ethical considerations [11].

6 CONCLUSION
In this study, we conduct a comprehensive evaluation of current
sensing modalities for gerontological loneliness and identified the
most effective categories. Using data from the US and Japan, we
find that social isolation, intensified by COVID-19, has the potential
to heighten feelings of loneliness. Our regression analysis stands
on par with the state-of-the-art, with the Random Forest model
achieving an 𝑅2 of 0.86. We found that non-invasive sensors, specifi-
cally sleep mattress sensor and temperature-humidity sensor, serve
as particularly informative indicators of loneliness. Prioritizing
non-intrusiveness, our study highlights the importance of devising
solutions customized for the elderly that include ‘plug-and-run’
system, survey reminders, and remote troubleshooting. From the
standpoint of HCI research, embedding these design elements is
crucial to optimize experiences and interventions targeting the
aging demographic.
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