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Abstract

Evaluating the quality of explainability methods is challenging due to the lack of
ground truth explanations, and often rely on hand-crafted heuristics. We curate
the Ground Truth eXplanation dataset (GTX) to evaluate the alignment of feature
attributions with human annotations. These annotations are carefully selected to be
directly causal to the ground truth label, which provides an unambiguous goal for
human-aligned explainable models. GTX is a diverse benchmark spanning multiple
real-world and high dimensional data types (time-series, image, and text). In these
settings, the actual explanatory features constitute only a small fraction of the entire
feature space. Our analysis finds that common explanation methods overlook the
ground truth explanatory features with a worryingly high false negative rate. Our
dataset provides a quantitative goal for the future development of feature attribution
algorithms: re-aligning explainable models with human explanations. GTX datasets
and data loaders publicly available at https://github.com/xjiae/HDDDS.

1 Introduction

The size of modern deep networks can easily exceed millions of parameters and hidden units, making
it challenging for humans to understand [1]. However, decision makers need to comprehend the
model’s reasoning and determine if and when they should rely on these predictions. In higher stakes
settings, there are severe repercussions for naively deploying models without fully understanding its
reasoning and limitations, such as in diagnosis systems in medicine [2] or legal briefs in judiciaries
[3]. To provide some degree of accountability, many post-hoc techniques [4, 5, 6] have been proposed
to explain the reasoning behind individual predictions of machine learning models.

One popular class of explanation techniques is feature attributions [7, 8, 9], where given an input, the
objective is to assign a score for each feature as it relates to the model’s prediction. Intuitively, the
score of a feature is intended to measure the “importance” of said feature towards the model prediction,
where larger scores indicate the feature was highly important for making the prediction. Feature
attributions have applications in classic machine learning settings such as vision [10, 11], language [12,
13], and reinforcement learning [14, 15], as well as more recent use-cases in industry [16] and
law [17].

However, feature attributions rarely come with formal guarantees of behavior [18]. While various
metrics have been proposed to evaluate feature attributions, each metric only provides a plausible,
partial view into the underlying model’s behavior that need not be accurate. For instance, some
metrics progressively remove features with the highest attribution scores and assessing the resulting
change [19, 20]. Many of these metrics arose out of necessity because ground-truth explanations for
comparison were unclear or simply not available. As a result, ensuring that feature attributions are of
high quality remains a significant challenge despite their widespread usage.
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Hence, our work puts forth a measurable and human-aligned target for feature attributions. In order
for models to effectively assist humans, it is essential for their decision-making to be aligned with
human judgment [21]. Specifically, a feature attribution for an explainable model should identify
the ground truth causal features in the data. 1 Therefore, we seek to quantify to what degree are
models and their feature attributions aligned with human judgment. If explainable models exhibit a
high degree of alignment with humans, then their explanations are more usable as a proxy for human
experts. For example, a doctor could use such a human-aligned attribution to explain a medical
diagnoses in lieu of asking a specialist, freeing up the specialist to pursue more challenging tasks.

However, evaluating feature attributions with human judgment is challenging due to the absence of a
ground truth explanation [22]. Several benchmarks for evaluating feature attribution methods, such
as Captum [23] and OpenXAI [24], have been established using synthetic datasets where the ground
truth can be carefully controlled and specified. However, there remains a need to complement these
benchmarks with high-dimensional, and real-world datasets that offer a diverse and rich perspective
for evaluating of feature attribution algorithms in natural settings. To this end, we have curated a set
of real-world datasets that possess ground truth human annotations in domains such as industrial
controls [25, 26, 27], artifact evaluation [28], and machine comprehension [29].

Our benchmark, called the Ground Truth eXplanation dataset (GTX), is specifically designed to
comprehensively evaluate the human-alignment of feature attribution methods in challenging, real-
world settings. Our contribution can be summarized as follows:

• We meticulously clean and process the human annotations to create the Ground Truth
Explanation (GTX) dataset. The resulting benchmark spans three prominent data domains:
time-series, image, and text, as depicted in Figure 1, but has a standardized and measurable
human-alignment goal across all tasks.

• We establish a baseline for the alignment of common feature attribution methods and models
with the human annotations using our GTX benchmark.

• In our analysis, we show that existing feature attribution algorithms have a high false negative
rate and tend to overlook the true explanatory features. This misalignment highlights the
need for future research to achieve more usable explanations.

The remainder of this paper is organized as follows: Section 2 provides a review of existing feature
attribution methods and explores relevant XAI benchmarks and datasets. In Section 3, we introduce
our dataset, highlighting its unique attributes and characteristics. To showcase potential usage of
feature attribution methods on our dataset, we present baseline experiments in Section 4. Subsequently,
in Section 5, we discuss the limitations of our dataset and conclude with a summary of our findings.

Figure 1: GTX overview. We consolidate raw data of time-series, image and text format. Then, we
process the annotation files to obtain the ground truth explanations in column, pixel and clause levels.

1We note that this criteria (explaining the prediction from patterns in the data) differs from explaining
predictions from patterns learned in the model. In the latter, the goal is different—these explanations aim to
uncover properties learned in the model which need not be aligned with the ground truth or be usable for humans.

2



2 Related Work

2.1 XAI methods on Feature Attribution

The existing literature encompasses various taxonomies of Explainable Artificial Intelligence (XAI)
methods, each tailored to address specific problems and aspects. In this study, our primary emphasis is
on the post-hoc method branch, with a specific focus on feature attribution [5, 7] or feature relevance
explanation [6]. Feature attribution refers to the process of determining the importance or contribution
of individual features within a dataset or input data to the predictions or output of a machine learning
model [7, 8, 9, 10, 30, 31, 32]. Specifically, we reproduce the code of two standard explanation
methods for evaluation: Vanilla Gradient [31] and Integrated Gradients [32].

2.2 XAI Benchmarks and Datasets

Many open-source library implement a handful of feature attribution algorithms, for example, Cap-
tum [33] and SHAP bechmarks [34]. However, they do not perform ground-truth based evaluation.
Several studies acknowledge the limitation of XAI due to the absence of ground-truth for evaluating
explanations [20, 35, 36]. To address this issue, researchers have started introducing ground truth
annotations to assess XAI methods. For instance, Amiri et al. [37] propose the use of canonical
equations as representations of explanations for evaluating their accuracy. Furthermore, Arras et
al. [38] introduce CLEVR-XA, a visual question answering dataset designed specifically for eval-
uating neural network explanations in computer vision tasks. OpenXAI [24] offers a transparent
evaluation of post hoc model explanations using tabular data and perform faithfulness evaluation with
ground truth of the synthetic data. Different from previous works, we present five real-world datasets
of different data types, i.e., time-series, image, and text, that can be used to perform evaluation based
on human-annotated ground truth explanations.

3 Ground Truth eXplanation Dataset

In our GTX dataset we consolidate three common types of data in time-series, image, and text,
for evaluating feature attribution methods. For time-series data the features correspond to periodic
samples of a plant state; for image data the features correspond to pixels of the image; for text data
the features correspond to tokens of the text. By analyzing the importance of these features, we can
gain insights into the decision-making process of the model from the input level.

3.1 Time-series

The time-series component of GTX consists of three different datasets from various industrial control
settings involving real-world or simulated plants. All three datasets were generated by sampling the
plant at a fixed frequency, where for each datapoint the feature values denote either a sensor reading
or a controller output.

Hardware-In-the-Loop-based Augmented ICS Security Dataset (HAI) [25]: The HAI dataset
was collected from a realistic industrial control system (ICS) testbed, augmented with a Hardware-
In-the-Loop (HIL) simulator for 379.3 hours. The HIL simulator emulates two crucial components
of the power generation domain: steam-turbine power generation and pumped-storage hydropower
generation, with a total of m = 86 features.

Secure Water Treatment Dataset (SWaT) [26]: The Secure Water Treatment testbed serves as a
scaled-down replica of a real-world industrial water treatment plant. It operates at a reduced capacity,
producing five gallons per minute of water for over 11 days. The treatment process involves the
utilization of membrane-based ultrafiltration and reverse osmosis units for effective water filtration,
comprising of m = 51 features in total.

Water Distribution Dataset (WADI) [27]: WADI is an extension of the SWaT testbed featuring
additional components and functionalities such as chemical dosing systems, booster pumps and valves,
as well as instrumentation and analyzers. It is collected over 16 days with m = 127 dimensions.
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At various time points a cyber attack (e.g. altering sensor readings) or a physical attack (e.g. altering
water flow) is performed, which allows one to obtain a ground truth of whether a plant state is to be
considered “normal” or “attacked”. The attacks target specific sets of equipment and have precise
start and end times, allowing us to obtain accurate ground truth explanations for the features during
the attacks. We manually process annotation files in both PDF and Excel formats, which contain the
start and end times of each attack. These annotations are then aligned with the timestamps of the raw
data records.

Each dataset is a sequence of periodic samples (x1, y1), . . . , (xT , yT ) where at each time step
t = 1, . . . , T the observations xt ∈ Rm denotes plant state while the label yt ∈ {0, 1} is an indicator
of whether the plant was attacked (yt = 1) or if the behavior is normal (yt = 0). We use a binary
mask at ∈ {0, 1}m as the ground truth explanation to denote which input feature is explanatory of
an attack. If yt = 1, then (at)

i = 1 implies that feautre i is involved in attack at time t — which
we know from the annotations supplied with the original datasets. If yt = 0, then we write at = 0,
the zeros vector, to mean that no attack occurred. In summary, our dataset loader provides three key
objects at each time step: the plant features xt, the attack indicator yt, and the explanation at.

To facilitate the use of our dataset with machine learning models in PyTorch [39], we wrap the raw
data using the torch.utils.data.Dataset class. Below is an example code snippet demonstrating
its usage with the HAI dataset:

bundle = get_data_bundle("hai", window_size=100 , train_batch_size=32)
train_dataloader = bundle["train_dataloader"]
x, y, a = next(iter(train_dataloader))
# x.shape ==(32,100 ,86), y.shape ==(32 ,), a.shape ==(32,100 ,86)

3.2 Image

MVTec-AD [28] is an industrial inspection dataset designed for benchmarking defects detection
methods. It consists of a 15 categories with a total of more than 5000 high-resolution (3×1024×1024)
images. Each category includes a set of defect-free training images and a test set containing images
with different types of defects, as well as defect-free images. The dataset provides pixel-accurate
ground truth annotations for the defect regions, which have been carefully annotated and reviewed by
the authors to align with human interpretation of real-world defects.

We allow the user to specify an input size d ≤ 1024 to down-sample an image to m = 3 × d × d
features, i.e. 3 color channels with a side-length of d pixels. Each image is correspondingly labeled
with whether it has a defect (y = 1) or not (y = 0). The ground truth explanation is a bitmask
a ∈ {0, 1}d×d denoting which positions are defects; if (a)ij = 1, then this means that the pixel at
position (i, j) is part of the defect. If y = 0, then a = 0, the zeros matrix, indicating no defects. The
objects returned by the dataset are the down-sampled image x, the defect label y, and the ground
truth explanation a.

As there are 15 image categories in total, MVTec is in fact a collection of 15 different datasets. We
implement the MVTec dataset with torch.utils.data.Dataset, and showcase its use below.

bundle = get_data_bundle("mvtec", input_size=256 , train_batch_size=32)
train_dataloader = bundle["train_dataloader"]
x, y, a = next(iter(train_dataloader))
# x.shape ==(32,3,256 ,256), y.shape ==(32 ,), a.shape ==(32,1,256 ,256)

Here hazelnut is one of 15 admissible classes among:

bottle, cable, capsule, carpet, grid, hazelnut, leather, metal_nut,
pill, screw, tile, toothbrush, transistor, wood, zipper

Here input_size is the dimension d to which we downsample, and the last flag of is_train=True
selects only images that are non-defect; if is_train=False then the selection is mixed.

3.3 Text

SQuAD (Stanford Question Answering Dataset) [29] is a widely used reading comprehension
dataset that includes 107,785 question-answer pairs based on 536 Wikipedia articles. The dataset
was generated by crowdworkers who formulated questions and provided specific text segments or
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spans as answers. The answers have undergone rigorous crowdworkers selection, additional answer
collection, and manual crosscheck processes, making them reliable ground truth explanations for the
corresponding questions.

The questions are concatenated with a context, such that model inputs have the form x = (xq, xc),
where xq are the question tokens and xc are the context tokens. The output of a question-answering
model is to identify a range of indices to highlight in the conjoined input x that constitutes as the
answer. As such, the output of a model on SQuAD is not a binary value as in the time-series and
image data, but instead a start-index and an end-index that denotes which tokens to highlight. For a
particular x in the dataset, the ground truth then consists of a pairing a = (as, ae), where as, ae are
integers that denote the highlight start and end indices, respectively, for x.

We implemented the SQuAD dataset with torch.utils.data.Dataset as follows, where we
demonstrate tokenization with the RoBERTa [40] base tokenizer to sequence lengths of 384.

# Use the "roberta -base" tokenizer from Hugging Face
bundle = get_data_bundle("squad", tokenizer_or_name="roberta -base",

train_batch_size=32)
train_dataloader = bundle["train_dataloader"]
input_ids , attn_mask , token_type_ids , start_pos , end_pos = next(iter(

train_dataloader))
# input_ids.shape ==(32 ,384), the default token sequence length

Each item within a SQuAD dataset contains a number of information relevant for a language-model
transformer, among them: item[0] corresponds to x, which we emphasize is the concatenation
of the question tokens and the context tokens; item[3] and item[4] correspond to the start and
end position indices, respectively. We use the defaults supplied with tensorflow_datasets and
transformers to determine the train-test split.

3.4 Dataset Statistics

In Table 1, we provide a summary of key statistics pertaining to the datasets. This includes information
on the feature dimensions, the number of positive instances representing attacks or defects, the number
of negative instances, and the corresponding positive ratio. Notably, the class distribution exhibits an
imbalance, signifying a discrepancy in the distribution between negative and positive instances. We
use “positive” to denote data for which y = 1, and “negative” to denote data for which y = 0.

However, it is important to note that the SQuAD dataset presents unique characteristics that distinguish
it from the other datasets. The variable lengths of paragraphs contribute to the variability in feature
dimensions. Additionally, the SQuAD dataset does not differentiate between positive and negative
instances, making it unsuitable for inclusion in Table 1 for comparative purposes.

Data Features Dimension Positive Count Negative Count Total Count Positive Ratio
HAI 86 12,030 1,353,572 1,365,602 0.88%
SWaT 51 54,621 892,098 946,719 5.77%
WADI 127 5,134 1,377,268 1,382,402 0.37%
MVTec 3d2 1256 4094 5350 23.48%

Table 1: Basic statistics of HAI, SWaT, WADI, and MVTec. When y = 1 we say that the datapoint is
positive; when y = 0 we say that it is negative.

Furthermore, we present several key statistics of the human annotations within our dataset. Specifi-
cally, we report the total number of human annotations conducted, the average number of explanatory
features per input, and the ratio of explanatory features to the entire feature space. This ratio serves as
a crucial metric for assessing the class imbalance between explanatory and non-explanatory features
in the annotations. For the SQuAD dataset, we gather and estimate the summary statistics based on
information provided in their papers [29, 41].

The presence of class imbalance poses significant challenges for feature attribution methods, as they
aim to accurately identify and attribute the importance of each feature in the prediction process.
When the number of explanatory features is significantly lower than the number of non-explanatory
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features, it can lead to biased attributions and potentially misleading interpretations of the model’s
behavior.

Data Annotation Count Average Count Explanatory Ratio
HAI 1,034,580 1.00 1.17%
SWaT 2,785,671 1.07 2.10%
WADI 652,018 1.93 1.52%
MVTec 1,317,011,456 45950.49 4.38%
SQuAD 107,785 4.64 3.10%

Table 2: Feature statistics of HAI, SWaT, WADI, MVTec and SQuAD.

3.5 Task Definition

We formulate the task as predicting which features of an input x ∈ X ,X ⊆ Rm related to the
target y ∈ Y . Specifically, a feature attribution model A : X → [0, 1]m maps an input x to an
m-dimensional vector â = Â(x) ∈ [0, 1]m, where each element is a score representing the degree
that the corresponding feature is explanatory of y. For each input x and target y, our dataset has a
m-bit vector that encodes the ground truth annotation function A : X → {0, 1}m. It maps each input
x to the human annotation a = A(x) ∈ {0, 1}m. By comparing â and a, we can directly evaluate the
performance of the feature attribution model.

4 Experiments

4.1 Predictive models

In our experiments involving time-series data, we utilize the standard implementation of well-
established logistic regression model (LR) [42] and Long Short-term Memory networks (LSTM).
In our analysis of the MVTec dataset, we utilize Fastflow [43], a CNN that employs ResNet18 as
its backbone for image feature extraction. The SQuAD dataset is processed using the widely-used
RoBERTa model [40]. These models are chosen to facilitate the application of diverse feature
attribution methods.

4.2 Feature Attribution methods

In our study, we employ several widely used feature attribution techniques. Specifically, we apply the
vanilla gradient (GRAD) [31] and integrated gradient (INTG) [32] to evalute the feature attribution
performance. The objective of this analysis is to assess the importance of individual features in the
decision-making process of the machine learning models. To quantify the effectiveness of the feature
attribution techniques in a binary manner, we establish a threshold on the feature attribution scores.
This threshold is determined by maximizing the F1-score, a widely utilized metric that balances
precision and recall.

4.3 Training

In our time-series data study, we employed two distinct training strategies. Firstly, we randomly
divided 70% of the dataset as the training set and train the Logistic Regression (LR) model. Secondly,
we preserved the temporal order by training a three-layered Long Short-Term Memory (LSTM)
model on the sliding window version of the dataset. The training ratio of 70% was maintained, and a
window size of 100 with a stride of one was used. For the image data, the FastFlow model was trained
on 70% of the MVTec dataset. We sampled both negative and positive instances for the time-series
and image training sets. The text data was trained using the RoBERTa model on the default training
set, which accounted for 82% of the SQuAD dataset.

All models were trained for five epochs with a learning rate of 10−6. The model with the best
validation accuracy was selected. All experiments are run with 4 Nvidia 2080Ti GPU, 80 vCPUs,
a processor Intel(R) % Xeon(R) Gold 6148 @ 2.4 GHz and 768GiB of RAM. Further details on
the model architecture can be found in the Appendix. It is important to note that hyperparameter
tuning was not the main focus of our study, as our primary objective was to showcase the utility of
our dataset.
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4.4 Metrics

By employing thresholds that optimize the F1-score on feature attribution, we obtain binary pre-
dictions for individual features. In this context, we consider a prediction of ‘1’ a positive out-
come (explanatory), while ‘0’ denotes a negative outcome (not explanatory). Let a = A(x) =
{ai | i = 1, . . . ,m} ∈ {0, 1}m represent the ground truth annotation for x ∈ Rm. Let
â = Â(x) = {âi | i = 1, . . . ,m} ∈ {0, 1}m denote the prediction generated by the attribu-
tion models and the threshold. We then concatenate all the features of all the inputs and compute
several evaluation metrics, including False Positive Rate (FPR), False Negative Rate (FNR), Accuracy
(ACC), and F1-score. The computation formulas for these metrics are presented below:

FPR =
{âi = 1 | ai = 0}

{ai = 0}
, FNR =

{âi = 0 | ai = 1}
{ai = 1}

(1)

ACC =
{âi = 0 | ai = 0}+ {âi = 1 | ai = 1}

{ai = 0}+ {ai = 1}
(2)

F1-score =
2{âi = 1 | ai = 1}

2{âi = 1 | ai = 1}+ {âi = 1 | ai = 0}+ {âi = 0 | ai = 1}
. (3)

4.5 Results

We randomly sampled 100 instances on individual datasets and conducted the experiments using 20
random seeds. The obtained results were then analyzed by reporting the mean and standard error
metric.

Time-series The results obtained from our experiments on time-series data have revealed that
GRAD and INTG miss-classify the explanatory feature as non-explanatory, which leads to a higher
FNR (+42.23%) than FPR on average, as shown in Table 3, 4, 5. In addition, we observe that
GRAD has a better performance in general, with higher accuracy (+17.71%) and F1-score (+11.10%)
performance than that of the INTG. This presents a serious problem as it undermines the reliability

Models Attribution FPR FNR ACC F1-score

LR
GRAD 0.02 ± 0.02 0.89 ± 0.09 0.97 ± 0.02 0.98 ± 0.01
INTG 0.49 ± 0.03 0.99 ± 0.01 0.51 ± 0.03 0.67 ± 0.03

LSTM
GRAD 0.06 ± 0.10 0.87 ± 0.19 0.94 ± 0.10 0.96 ± 0.06
INTG 0.01 ± 0.00 0.89 ± 0.02 0.98 ± 0.00 0.99 ± 0.00

Table 3: Results for HAI dataset.

and effectiveness of the attribution methods in correctly identifying the features that contribute to
the model’s decision-making process. Consequently, it highlights the need for further improvement
and development of attribution algorithms to address this challenge and enhance their capability to
accurately identify and attribute the explanatory features.

Models Attribution FPR FNR ACC F1-score

LR
GRAD 0.03 ± 0.00 0.50 ± 0.05 0.96 ± 0.00 0.97 ± 0.00
INTG 0.52 ± 0.03 0.90 ± 0.03 0.48 ± 0.03 0.64 ± 0.03

LSTM
GRAD 0.31 ± 0.36 0.66 ± 0.35 0.69 ± 0.36 0.73 ± 0.37
INTG 0.53 ± 0.01 0.66 ± 0.04 0.47 ± 0.01 0.63 ± 0.01

Table 4: Results for SWaT dataset.

Image For the image data, Table 11 demonstrates that a higher FNR (+69.97%) than FPR is also
observed, suggesting that the attribution methods fail to capture all the explanatory pixels. Different
from the time-series dataset, INTG has a better performance than GRAD method, with a higher
accuracy (+3.29%) and F1-score (+2.15%).
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Models Attribution FPR FNR ACC F1-score

LR
GRAD 0.58 ± 0.07 0.28 ± 0.07 0.42 ± 0.07 0.58 ± 0.07
INTG 0.50 ± 0.03 0.94 ± 0.03 0.49 ± 0.03 0.66 ± 0.03

LSTM
GRAD 0.31 ± 0.11 0.46 ± 0.14 0.69 ± 0.11 0.80 ± 0.09
INTG 0.33 ± 0.24 0.71 ± 0.20 0.67 ± 0.24 0.77 ± 0.16

Table 5: Results for WADI dataset.
Models Attribution FPR FNR ACC F1-score

FastFlow
GRAD 0.14 ± 0.11 0.79 ± 0.11 0.86 ± 0.10 0.91 ± 0.07
INTG 0.10 ± 0.05 0.85 ± 0.06 0.89 ± 0.05 0.93 ± 0.03

Table 6: Results for MVTec dataset.

Text The result of the SQuAD dataset can be found in Table 12. As with previous datasets, a
notable observation is the presence of a high FNR compared with the image dataset. The same result
for INTG and GRAD could be due to the similar gradient computations by the RoBERTa model.
However, the results may vary depending on the predictive model architecture, and the complexity of
the explanation task in practice.

Models Attribution FPR FNR ACC F1-score

RoBERTa
GRAD 0.00 ± 0.00 1.00 ± 0.00 0.87 ± 0.00 0.81 ± 0.00
INTG 0.00 ± 0.00 1.00 ± 0.00 0.87 ± 0.00 0.81 ± 0.00

Table 7: Results for SQuAD dataset.

Overall, the GRAD method demonstrates a slightly better performance than INTG, exhibiting a higher
accuracy (+9.97%) and F1-score (+6.23%) on average. In Figure 2, we present a comparative analysis
of average FPRs and FNRs for different attribution methods and datasets. The figure highlights that
SQuAD exhibits the highest FNR while WADI showcases the highest FPR on average.

More figures and results on other attribution methods (e.g. SHAP [7] and LIME [8]) can be found
in the Appendix. Our experiments are illustrative in nature, running with different machines or
configurations may yield slightly different results. However, the overall trends and patterns observed
in the data should remain similar and consistent.

(a) The average False Negative Rate (FPR). (b) The average False Negative Rate (FNR)

Figure 2: Average error rates comparison for INTG and GRAD across all datasets.

5 Conclusion

One limitation of our dataset is the absence of real-world graph data. However, we are actively
searching and we will update our repository once we find suitable datasets. In summary, our GTX
dataset includes time-series, image, and text data, along with detailed feature-wise ground truth
explanations. We have established a baseline for aligning common feature attribution algorithms with
human annotation of the actual explanatory features, which takes up a relatively small proportion
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in real-world datasets. Our experiments have revealed a significant challenge posed by a higher
FNR than FPR in existing feature attribution methods, emphasizing the need for improvements to
accurately identify the true explanatory features. With its comprehensive collection and diverse data
types, our dataset is a valuable resource for the XAI community, facilitating quantitative evaluation
and advancements in feature attribution algorithms.
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A Appendix

A.1 Model Architecture

Three-layered LSTM model

SimpleLSTM(
(lstm1): LSTM(num_features, 128)
(lstm2): LSTM(128, 128)
(lstm3): LSTM(128, 128)
(linear): Linear(128, 2))

We used the FastFlow with ResNet18 backbone and RoBERTa-base model. For details of model
configuration, please refer to their papers [43, 40].
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A.2 More Experiment Results

In this section, we present additional experimental results for the LIME method [8] and the SHAP
method [7] applied to all the datasets, utilizing their respective predictive models. It is worth noting
that the issue persists in both methods, whereby the false negative rate (FNR) remains greater than
the false positive rate (FPR).

Models Attribution FPR FNR ACC F1-score

LSTM
LIME 0.19 ± 0.13 0.74 ± 0.13 0.81 ± 0.13 0.88 ± 0.09
SHAP 0.53 ± 0.04 0.48 ± 0.03 0.47 ± 0.04 0.64 ± 0.03

Table 8: Results on LIME and SHAP for HAI dataset.

Models Attribution FPR FNR ACC F1-score

LSTM
LIME 0.37 ± 0.20 0.63 ± 0.19 0.63 ± 0.20 0.75 ± 0.14
SHAP 0.53 ± 0.02 0.51 ± 0.02 0.47 ± 0.02 0.63 ± 0.02

Table 9: Results on LIME and SHAP for SWaT dataset.

Models Attribution FPR FNR ACC F1-score

LSTM
LIME 0.44 ± 0.15 0.55 ± 0.15 0.56 ± 0.15 0.70 ± 0.10
SHAP 0.18 ± 0.16 0.79 ± 0.15 0.82 ± 0.16 0.88 ± 0.11

Table 10: Results on LIME and SHAP for WADI dataset.

Models Attribution FPR FNR ACC F1-score

FastFlow
LIME 0.28 ± 0.25 0.57 ± 0.23 0.72 ± 0.25 0.80 ± 0.20
SHAP 0.18 ± 0.21 0.73 ± 0.18 0.82 ± 0.21 0.87 ± 0.18

Table 11: Results on LIME and SHAP for MVTec dataset.

Models Attribution FPR FNR ACC F1-score

RoBERTa
LIME 0.01 ± 0.03 1.00 ± 0.02 0.99 ± 0.03 0.98 ± 0.01
SHAP 0.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

Table 12: Results on LIME and SHAP for SQuAD dataset.

Users are free to apply our dataset to modern models such as the tabular version of Transformer,
Vision Transformers, and GPT-2. Since we provide PyTorch compatibility, running these models is
straightforward.

A.3 URL to website

URL: https://github.com/xjiae/HDDDS.

A.4 Author statement

We bear all responsibility in case of violation of rights, and confirm that we will use the MIT License.

A.5 Dataset documentation, intended use and metadata

We adopt the framework data cards, please find the requested information below. For better visual
display, please visit this link: https://github.com/xjiae/HDDDS/blob/main/description.
md.

The Ground Truth eXplanation (GTX) dataset is a curated collection that addresses the challenge
of evaluating the quality of explainability methods. Existing approaches often lack ground truth
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explanations and heavily rely on hand-crafted heuristics. In response, the GTX dataset has been
created to assess the alignment of feature attributions with human annotations. It contains time-series
data (HAI, SWaT, WADI) from the industrial control domain, image data (MVTec) from the defect
inspection domain, and text data (SQuAD) from the machine comprehension domain.

Dataset Link Dataset Link: HAI, SWaT, WADI, MVTec, SQuAD.

Data Card Author(s)

• Xiayan Ji, University of Pennsylvania: (Manager)

• Anton Xue, University of Pennsylvania: (Manager)

A.5.1 Authorship

Dataset Owners

Team(s) University of Pennsylvania

Author(s)

• Xiayan Ji, Ph.D. Student, University of Pennsylvania, 2023

• Anton Xue, Ph.D. Student, University of Pennsylvania, 2023

• Rajeev Alur, Professor, University of Pennsylvania, 2023

• Oleg Sokolsky, Professor, University of Pennsylvania, 2023

• Insup Lee, Professor, University of Pennsylvania, 2023

• Eric Wong, Assistant Professor, University of Pennsylvania, 2023

Contact Detail(s)

• Point of Contact: Xiayan Ji

• Affiliation: University of Pennsylvania

• Contact: xjiae@seas.upenn.edu

A.5.2 Dataset Overview
• Data about places and objects

• Synthetically generated data

• Data about systems or products and their behaviors

Dataset Snapshot

Category Data

Size of Dataset 12 GB
Number of Instances 3,798,242
Number of Labels (explanation) 5,951,278,880
Average Labeles Per Instance 1566.85
Algorithmic Labels 4,629,687,370
Human Labels 1,321,591,510

Dataset Summary: time-series, image and text data with ground truth explanation labels.
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Content Description Each content contains an input data (x), a target label (y) and an explanation
(a).

Additional Notes: for SQuAD, the format is slightly different, the input and target are combined
together to better be fitted to a language model. In addition, the explanation is in the form of a start
and end position.

Risk Type(s)

• No Known Risks

A.5.3 Dataset Version and Maintenance

Maintenance Status Regularly Updated - New versions of the dataset have been or will continue
to be made available.

Version Details Current Version: 1.0

Last Updated: 06/2023

Release Date: 06/2023

Maintenance Plan In our maintenance plan, our primary focus will be on preserving and leveraging
the existing data that we have collected. This involves ensuring the integrity and security of the data
through regular backups, implementing robust data storage practices, and conducting periodic audits
to identify any potential issues or anomalies. Additionally, we recognize the growing importance
of graph datasets in various domains. To capitalize on this, we will actively explore and evaluate
potential graph datasets that align with our needs and objectives. This includes seeking out reliable
sources, assessing the quality and relevance of the data, and integrating suitable graph datasets into
our existing infrastructure. By incorporating graph datasets, we aim to enhance the depth and breadth
of our analysis, uncover hidden patterns and relationships, and gain valuable insights that can drive
informed decision-making and optimize our operations. In addition, we are aware that the SQuAD
dataset does not have a clear classification task and may not align well with the remaining dataset.
We are also exploring the Contract Understanding Atticus Dataset (CUAD) [44] to see if we can algin
the document classification task with the ground truth explanation they provide.

Our maintenance plan thus combines the preservation of existing data with the exploration of new
graph and text datasets, ensuring a comprehensive and forward-looking approach to data management
and utilization.

Versioning: The dataset is versioned based on several criteria. This includes significant updates or
changes in the data collection process, methodology, or data sources. Corrections or improvements to
enhance data accuracy or reliability also warrant a new version. Substantial additions or expansions,
such as new data points or variables, are considered for versioning. User feedback and requests
for specific modifications are also taken into account. The versioning process ensures transparency,
traceability, and reproducibility, keeping the dataset relevant and adaptable to evolving needs.

Updates: The dataset is refreshed or updated based on regular time-based updates, changes in data
sources or collection methodologies, user feedback, and advancements in technology or analytical
techniques. This ensures the dataset remains relevant, accurate, and valuable for users in making
informed decisions.

Errors: Error handling for the dataset involves systematic procedures to identify and correct errors,
maintaining data integrity through documentation and tracking, and implementing measures to
prevent future errors. These criteria ensure data quality, transparency, and reliability for users.

Feedback: The dataset incorporates criteria for feedback by actively seeking input from users and
stakeholders. Feedback on the dataset’s content, quality, and usability is welcomed and considered
for future updates and improvements. This iterative feedback process ensures that the dataset meets
the needs and expectations of its users, enhancing its relevance and value.

Next Planned Update(s) Version affected: 1.0

Next data update: 08/2023
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Next version: 1.1

Next version update: 08/2023

Expected Change(s) Updates to Data: Next version of the dataset will possibly include suitable
graph dataset and modification to the text dataset so that it has a clear classification task. We are
currently investigating at the CUAD dataset [44].

A.5.4 Example of Data Points

Primary Data Modality

• Image Data

• Text Data

• Time Series

Sampling of Data Points

• Demo Link

Data Fields

Field Name Field Value Description

x input data The input data, time-series or image or pagraph.
y target label (0/1) The target label of attacked/defect/answerable.
a explanation The ground truth feature to explain the target label.

Typical Data Point This is a typical data point:

{’x’: tensor([[0.6273, 0.2893, 0.2775, ..., 0.4198, 0.3439, 0.5313],
[0.6273, 0.2985, 0.2775, ..., 0.4198, 0.3401, 0.5330],
[0.6273, 0.3055, 0.2775, ..., 0.4198, 0.3439, 0.5292],
...,
[0.6273, 0.3265, 0.2775, ..., 0.4198, 0.3467, 0.4995],
[0.6273, 0.3341, 0.2775, ..., 0.4198, 0.3467, 0.5019],
[0.6273, 0.3444, 0.2775, ..., 0.4198, 0.3467, 0.5022]]),

tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0]),

tensor([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]], dtype=torch.float64)}

A.5.5 Motivations & Intentions

Motivations

Purpose(s)

• Research
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Domain(s) of Application Machine Learning, Explainability, XAI, Anomaly Detection.

Motivating Factor(s)

• Evaluating the quality of explainability methods is challenging due to the lack of ground
truth explanations, and often rely on hand-crafted heuristics.

• Re-aligning explainable models with human explanations

A.5.6 Intended Use

Dataset Use(s)

• Safe for research use

Suitable Use Case(s) Suitable Use Case: One suitable use case for the dataset is in the field
of explainable artificial intelligence (AI). The dataset, Ground Truth eXplanation (GTX), provides
a valuable resource for evaluating and improving feature attribution methods. Researchers and
practitioners in the field can utilize the dataset to benchmark and compare different algorithms,
assess their alignment with human annotations, and identify areas for improvement. The diverse
nature of the dataset, spanning various data types such as time-series, images, and text, allows for
comprehensive evaluation in different real-world scenarios.

Unsuitable Use Case(s) Unsuitable Use Case: Suitable Use Case: One suitable use case for the
dataset is in the field of explainable artificial intelligence (AI). The dataset, Ground Truth eXplanation
(GTX), provides a valuable resource for evaluating and improving feature attribution methods.
Researchers and practitioners in the field can utilize the dataset to benchmark and compare different
algorithms, assess their alignment with human annotations, and identify areas for improvement. The
diverse nature of the dataset, spanning various data types such as time-series, images, and text, allows
for comprehensive evaluation in different real-world scenarios.

Research and Problem Space(s) The specific problem space that the Ground Truth eXplanation
(GTX) dataset aims to address is the evaluation and improvement of feature attribution methods in
explainable artificial intelligence (AI). The dataset seeks to tackle the challenge of assessing the
alignment between feature attributions and human annotations, providing a quantitative benchmark
for evaluating the quality of these methods.

Citation Guidelines Guidelines & Steps: Please cite our work as follows (to be updated later):

BiBTeX:

@article{snp2023,
title={Ground Truth eXplanation Datset},
author={../},
journal={...},
year={2023}

}

A.5.7 Access, Rentention, & Wipeout

Access

Access Type

• External - Open Access

Documentation Link(s)

• GitHub URL

16

https://github.com/xjiae/HDDDS


Policy Link(s)

• Direct download URL: link

Code to download data: https://github.com/xjiae/HDDDS/blob/main/setup.sh

Retention

Duration Infinite duration.

A.5.8 Provenance

Collection

Method(s) Used

• Taken from other existing datasets

Methodology Detail(s) Collection Type

Source: HAI, SWaT, WADI, MVTec, SQuAD.

Is this source considered sensitive or high-risk? [No]

Dates of Collection: [05 2023 - 06 2023]

Primary modality of collection data:

• Image Data

• Text Data

• Time Series

Update Frequency for collected data:

• Static

Source Description(s)

• Source: Hardware-In-the-Loop-based Augmented ICS Security Dataset (HAI) The HAI
dataset was collected from a realistic industrial control system (ICS) testbed, augmented
with a Hardware-In-the-Loop (HIL) simulator for 379.3 hours. The HIL simulator emulates
two crucial components of the power generation domain: steam-turbine power generation
and pumped-storage hydropower generation, with a total of m = 86 features.

• Source: SWaT, WADI. The Secure Water Treatment testbed serves as a scaled-down replica
of a real-world industrial water treatment plant. It operates at a reduced capacity, producing
five gallons per minute of water for over 11 days. The treatment process involves the
utilization of membrane-based ultrafiltration and reverse osmosis units for effective water
filtration, comprising of (m = 51) features in total. WADI is an extension of the SWaT
testbed featuring additional components and functionalities such as chemical dosing systems,
booster pumps and valves, as well as instrumentation and analyzers. It is collected over 16
days with (m = 127) dimensions.

• Source: MVTec is an industrial inspection dataset designed for benchmarking defects
detection methods. It consists of a 15 categories with a total of more than 5000 high-
resolution (3,1024, 1024) images. Each category includes a set of defect-free training
images and a test set containing images with different types of defects, as well as defect-free
images. The dataset provides pixel-accurate ground truth annotations for the defect regions,
which have been carefully annotated and reviewed by the authors to align with human
interpretation of real-world defects.
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• Source: SQuAD is a widely used reading comprehension dataset that includes 107,785
question-answer pairs based on 536 Wikipedia articles. The dataset was generated by
crowdworkers who formulated questions and provided specific text segments or spans as
answers. The answers have undergone rigorous crowdworkers selection, additional answer
collection, and manual crosscheck processes, making them reliable ground truth explanations
for the corresponding questions.

Collection Cadence Static: Data was collected once from single or multiple sources.

Data Integration

Source Included Fields

Data fields of each datasets were collected and are included in the dataset. We found the detailed
description for HAI (Table 15 and 16) and SWaT (Table 17) and consolidate them to the tables
below. For WADI, we did not find any detailed description. It is an extension of SWaT hence
they share similar features. We attach the testbed information https://itrust.sutd.edu.sg/
itrust-labs-home/itrust-labs_wadi/.

Data Processing Collection Method or Source

Description: In our data processing pipeline, we employ different techniques based on the data type.
For timeseries data, we apply normalization to ensure it falls within the range of [0, 1], enabling
better comparison and analysis across different variables. On the other hand, we do not perform any
additional processing for image and text data, as they are inherently suitable for analysis without
preprocessing steps.

When it comes to annotations, we have a dedicated process to handle them. For ground truth
annotation files, which are typically stored in formats such as Excel or PDF, we extract the relevant
information such as start time, end time, and the sensors involved in the attack. We then align this
information with the raw data to ensure accurate labeling of explanations. This process allows us to
establish a clear link between the annotated events and the underlying data, facilitating the evaluation
and analysis of the explanations provided by our models.

By leveraging these data processing techniques, we ensure that the data is appropriately prepared and
annotated for further analysis and evaluation. This enables us to derive valuable insights and make
informed decisions based on the processed and labeled data.

Methods employed: Normalization.

Tools or libraries: Min-Max scaling.

A.5.9 Collection Criteria

Data Selection

• Collection Method of Source: We select the dataset based on availability of ground truth
of explanations.

Data Inclusion

• Collection Method of Source: Same as above.

Data Exclusion

• Collection Method of Source: We exclude data that does not have ground truth for
explanation.

A.5.10 Relationship to Source

Use & Utility(ies)
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• Dataset: The resulting Ground Truth eXplanation (GTX) dataset is closely aligned with
the purposes, motivations, and intended use of the upstream sources (HAI, WADI, SWaT,
MVTec, and SQuAD). Through meticulous cleaning and preprocessing of annotation files,
the dataset provides accurate ground truth information for feature attribution evaluation
in explainable AI. This alignment ensures that the GTX dataset is a valuable resource for
benchmarking, model development, and educational purposes, enabling advancements in
transparency, interpretability, and trustworthiness of AI systems across domains.

Benefit and Value(s)

• Dataset: The Ground Truth eXplanation (GTX) dataset provides consumers with curated and
cleaned annotations, consolidating data from multiple sources. Compared to the upstream
sources, it offers enhanced data quality, convenience, and relevance for evaluating and
improving feature attribution methods in explainable AI.

Limitation(s) and Trade-Off(s)

• Dataset: While the resulting Ground Truth eXplanation (GTX) dataset offers benefits, it
also has certain limitations compared to the upstream sources. Firstly, the GTX dataset
may have reduced granularity compared to the original upstream sources, as it involves
cleaning and preprocessing steps that can result in some loss of detailed information.
Secondly, the dataset’s scope and coverage may be limited to specific features or attributes
relevant to feature attribution evaluation, potentially excluding certain aspects present in the
upstream sources. Additionally, the GTX dataset’s generalizability may be constrained by
the specific contexts and domains of the upstream sources, which may not fully represent
the diverse range of applications and scenarios. It is important for consumers to consider
these limitations and assess whether the available data adequately meets their specific needs
and requirements.

A.5.11 Version and Maintenance
• Release date: 06/2023
• Link to dataset: GTX + 1.0
• Status: [Actively Maintained]
• Size of Dataset: 12 GB
• Number of Instances: 3,798,242

Note(s) and Caveat(s) We may update the dataset content if we find suitable graph dataset, but it
will not affect the exitsing datasets.

Cadence

• Static

Last and Next Update(s)

• Date of last update: 14/06/2023
• Total data points affected: 3,798,242
• Data points updated: 3,798,242
• Data points added: 3,798,242
• Data points removed: 0
• Date of next update: 08/08/2023

Changes on Update(s)

• Dataset: Update five real-world datasets.
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A.5.12 Extended Use

Use with Other Data

Safety Level

• Safe to use with other data

Known Safe Dataset(s) or Data Type(s) Data Type: time-series, image, and text.

Best Practices When using the Ground Truth eXplanation (GTX) dataset with other datasets or
data types, it is important to ensure data compatibility, identify common features, validate and
cross-reference the data, consider contextual relevance, document assumptions and limitations, and
perform exploratory analysis for insights.

Known Unsafe Dataset(s) or Data Type(s) N/A

A.5.13 Forking & Sampling

Safety Level

• Safe to form and/or sample

Acceptable Sampling Method(s)

• Cluster Sampling

• Haphazard Sampling

• Multi-stage sampling

• Random Sampling

• Retrospective Sampling

• Stratified Sampling

• Systematic Sampling

• Weighted Sampling

• Unknown

• Unsampled

Best Practice(s) When forking or sampling the GTX dataset, best practices include clearly defining
sampling criteria, maintaining representative samples, documenting the sampling methodology,
considering sample size and statistical power, and validating the sample.

Risk(s) and Mitigation(s) No known risk for sampling.

A.5.14 Use in ML or AI Systems

Dataset Use(s)

• Training

• Testing

• Validation

• Development or Production Use

• Fine Tuning
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Notable Feature(s) The GTX dataset exhibits notable feature distributions and explicit relationships
between individual instances. Through careful curation, the dataset captures diverse real-world
data types such as time-series, image, and text, each with its distinct feature distributions. These
distributions may reveal patterns, trends, or variations in the data, providing valuable insights into
the characteristics of different instances. Additionally, explicit relationships between individual
instances can be identified through the ground truth annotations, which establish causal connections
between features and the corresponding labels. These relationships help to elucidate the impact and
importance of specific features in explaining the ground truth, contributing to the evaluation and
improvement of feature attribution methods in explainable AI. By leveraging the feature distributions
and explicit relationships within the dataset, researchers, practitioners, and educators can gain a
deeper understanding of the data and make informed decisions in their respective domains.

Usage Guideline(s) Usage Guidelines: When using the GTX dataset, consumers should comply
with licensing and terms of use, provide proper attribution and citation, aim for reproducibility and
transparency, practice responsible and ethical use, and foster communication and collaboration within
the community.

Approval Steps: N/A.

Reviewer: Provide the name of a reviewer for publications referencing this dataset.

Distribution(s)

Set Number of data points

Train 70%
Test 20%
Validation 10%

Splits: Recommand splts.

Known Correlation(s) All the features are correlated with each other in a given instance. Hence,
user should treat them as a complete data point when process them.

A.5.15 Transformations

Synopsis

Transformation(s) Applied

• Cleaning Missing Values

• Normalization

Field(s) Transformed Transformation Type

All features in time-series dataset are preprocessed. But user can also specified “raw” for contents to
get the original dataset.

Library(ies) and Method(s) Used Transformation Type

Method: For timeseries data, we apply normalization to ensure it falls within the range of [0, 1],
enabling better comparison and analysis across different variables.

Platforms, tools, or libraries: - Platform, tool, or library: sklearn.preprocessing.MinMaxScaler.

Transformation Results: All time-series values falls within the range of [0, 1].

A.5.16 Breakdown of Transformations

Cleaning Missing Value(s) We fill missing sensor values with mean of the corresponding column.
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Method(s) Used To handle missing sensor values, we replace them with the mean value of the
corresponding column.

Platforms, tools, or libraries

• Platform, tool, or library: pandas.DataFrame.fillna

A.5.17 Annotations & Labeling

Annotation Workforce Type

• Annotation Target in Data
• Machine-Generated
• Annotations

A.5.18 Annotation Characteristic(s)

Annotation Number

Total number of annotations 1,321,591,510
Average annotations per example 17,962

Annotation Description(s) The annotations applied to the dataset were manually performed by
the author. The author meticulously reviewed the annotation file, ensuring precise alignment of
the start and end times of each attack/defect. They annotated the affected features, indicating the
specific features impacted during each attack. The annotation process involved a thorough analysis
and interpretation of the data to ensure accuracy and consistency. For non-attacked/defect instances,
an all zeroes annotation is generated automatically. No specific platforms, tools, or libraries were
mentioned in the provided information.

Annotation Distribution(s) There are two classes of annotations, 1 for explanatory feature and 0
otherwise. We report the ratio for class 1.

Annotation Type Number

HAI, column-wise 1,034,580 (1.17%)
SWaT, column-wise 2,785,671 (2.10%)
WADI, column-wise 652,018 (1.52%)
MVTec, pixel-wise 1,317,011,456 (4.38%)
SQuAD, start-end position pair 107,785 (3.10%)

Annotation summary: We summarize the explanatory feature count and ratio.

A.5.19 Terms of Art

Concepts and Definitions referenced in this Data Card

Term of Art Definition: feature attribution

Interpretation: Feature attributions indicate how much each feature in your model contributed to the
predictions for each given instance.
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Features Min Value Max Value Unit Description
P1_B2004 0 10 bar Heat-exchanger outlet pressure setpoint
P1_B2016 0 10 bar Pressure demand for thermal power output control
P1_B3004 0 720 mm Water level setpoint (return water tank)
P1_B3005 0 2500 l/h Discharge flowrate setpoint (return water tank)
P1_B4002 0 100 °C Heat-exchanger outlet temperature setpoint
P1_B4005 0 100 % Temperature PID control output
P1_B400B 0 2500 l/h Water outflow rate setpoint (heating water tank)
P1_B4022 0 40 °C Temperature demand for thermal power output control
P1_FCV01D 0 100 % Position command for the FCV01 valve
P1_FCV01Z 0 100 % Current position of the FCV01 valve
P1_FCV02D 0 100 % Position command for the FCV02 valve
P1_FCV02Z 0 100 % Current position of the FCV02 valve
P1_FCV03D 0 100 % Position command for the FCV03 valve
P1_FCV03Z 0 100 % Current position of the FCV03 valve
P1_FT01 0 2500 mmH2O Measured flowrate of the return water tank
P1_FT01Z 0 3190 l/h Water inflow rate converted from P1_FT01
P1_FT02 0 2500 mmH2O Measured flowrate of heating water tank
P1_FT02Z 0 3190 l/h Water outflow rate conversion from P1_FT02
P1_FT03 0 2500 mmH2O Measured flowrate of the return water tank
P1_FT03Z 0 3190 l/h Water outflow rate converted from P1_FT03
P1_LCV01D 0 100 % Position command for the LCV01 valve
P1_LCV01Z 0 100 % Current position of the LCV01 valve
P1_LIT01 0 720 mm Water level of the return water tank
P1_PCV01D 0 100 % Position command for the PCV01 valve
P1_PCV01Z 0 100 % Current position of the PCV01 valve
P1_PCV02D 0 100 % Position command for the PCV2 valve
P1_PCV02Z 0 100 % Current position of the PCV02 valve
P1_PIT01 0 10 bar Heat-exchanger outlet pressure
P1_PIT01_HH 0 10 bar Highest outlet pressure of the heat-exchanger
P1_PIT02 0 10 bar Water supply pressure of the heating water pump
P1_PP01AD 0 1 Boolean Start command of the main water pump PP01A
P1_PP01AR 0 1 Boolean Running state of the main water pump PP01A
P1_PP01BD 0 1 Boolean Start command of the main water pump PP01B
P1_PP01BR 0 1 Boolean Running state of the main water pump PP01B
P1_PP02D 0 1 Boolean Start command of the heating water pump PP02
P1_PP02R 0 1 Boolean Running state of the heating water pump PP02
P1_PP04 0 100 % Control out of the cooler pump
P1_PP04SP 0 100 °C Cooler temperature setpoint
P1_SOL01D 0 1 Boolean Open command of the main water tank supply valve
P1_SOL03D 0 1 Boolean Open command of the main water tank drain valve
P1_STSP 0 1 Boolean Start/stop command of the boiler DCS
P1_TIT01 -50 150 °C Heat-exchanger outlet temperature
P1_TIT02 -50 150 °C Temperature of the heating water tank
P1_TIT03 -50 150 °C Temperature of the main water tank
P2_24Vdc 0 30 Voltage DCS 24V Input Voltage
P2_ATSW_Lamp 0 1 Boolean Lamp of the Auto SW
P2_AutoGo 0 1 Boolean Auto start button
P2_AutoSD 0 3200 RPM Auto speed demand
P2_Emerg 0 1 Boolean Emergency button
P2_MASW 0 1 Boolean Manual(1)/Auto(0) SW
P2_MASW_Lamp 0 1 Boolean Lamp of Manual SW
P2_ManualGO 0 1 Boolean Manual start button
P2_ManualSD 0 3200 RPM Manual speed demand
P2_OnOff 0 1 Boolean On/off switch of the turbine DCS
P2_RTR 0 2880 RPM RPM trip rate
P2_SCO 0 100000 - Control output value of the speed controller
P2_SCST -100 100 RPM Speed change proportional to frequency change of the STM
P2_SIT01 0 3200 RPM Current turbine RPM measured by speed probe
P2_TripEx 0 1 Boolean Trip emergency exit button
P2_VIBTR01 -10 10 µm Shaft-vibration-related Y-axis displacement near the 1st mass wheel
P2_VIBTR02 -10 10 µm Shaft-vibration-related X-axis displacement near the 1st mass wheel
P2_VIBTR03 -10 10 µm Shaft-vibration-related Y-axis displacement near the 2nd mass wheel
P2_VIBTR04 -10 10 µm Shaft-vibration-related X-axis displacement near the 2nd mass wheel
P2_VT01 11 12 rad/s Phase lag signal of the key phasor probe
P2_VTR01 -10 10 µm Preset vibration limit for the sensor P2_VIBTR01
P2_VTR02 -10 10 µm Preset vibration limit for the sensor P2_VIBTR02
P2_VTR03 -10 10 µm Preset vibration limit for the sensor P2_VIBTR03
P2_VTR04 -10 10 µm Preset vibration limit for the sensor P2_VIBTR03

Table 15: HAI feature description.
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P3_FIT01 0 27648 - Flow rate of water flowing into the upper water tank
P3_LCP01D 0 27648 - Speed command for the pump LCP01
P3_LCV01D 0 27648 - Position command for the valve LCV01
P3_LH01 0 70 % High water level set-point
P3_LIT01 0 90 % Water level of the upper water tank
P3_LL01 0 70 % Low water level set-point
P3_PIT01 0 27648 - Pressure of water flowing into the upper water tank
P4_HT_FD -0.02 0.02 mHz Frequency deviation of HTM
P4_HT_PO 0 100 MW Output power of HTM
P4_HT_PS 0 100 MW Scheduled power demand of HTM
P4_LD 0 500 MW Total electrical load demand
P4_ST_FD -0.02 0.02 Hz Frequency deviation of STM
P4_ST_GOV 0 27648 - Gate opening rate of STM
P4_ST_LD 0 500 MW Electrical load demand of STM
P4_ST_PO 0 500 MW Output power of STM
P4_ST_PS 0 500 MW Scheduled power demand of STM
P4_ST_PT01 0 27648 - Digital value of steam pressure of STM
P4_ST_TT01 0 27648 - Digital value of steam temperature of STM

Table 16: HAI feature description continued.
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Feature Type Description
FIT-101 Sensor Flow meter; Measures inflow into raw water tank.
LIT-101 Sensor Level Transmitter; Raw water tank level.
MV-101 Actuator Motorized valve; Controls water flow to the raw water tank.
P-101 Actuator Pump; Pumps water from raw water tank to second stage.
P-102 (backup) Actuator Pump; Pumps water from raw water tank to second stage.
AIT-201 Sensor Conductivity analyser; Measures NaCl level.
AIT-202 Sensor pH analyser; Measures HCl level.
AIT-203 Sensor ORP analyser; Measures NaOCl level.
FIT-201 Sensor Flow Transmitter; Control dosing pumps.
MV-201 Actuator Motorized valve; Controls water flow to the UF feed water tank.
P-201 Actuator Dosing pump; NaCl dosing pump.
P-202 (backup) Actuator Dosing pump; NaCl dosing pump.
P-203 Actuator Dosing pump; HCl dosing pump.
P-204 (backup) Actuator Dosing pump; HCl dosing pump.
P-205 Actuator Dosing pump; NaOCl dosing pump.
P-206 (backup) Actuator Dosing pump; NaOCl dosing pump.
DPIT-301 Sensor Differential pressure indicating transmitter; Controls the back-wash process.
FIT-301 Sensor Flow meter; Measures the flow of water in the UF stage.
LIT-301 Sensor Level Transmitter; UF feed water tank level.
MV-301 Actuator Motorized Valve; Controls UF-Backwash process.
MV-302 Actuator Motorized Valve; Controls water from UF process to De-Chlorination unit.
MV-303 Actuator Motorized Valve; Controls UF-Backwash drain.
MV-304 Actuator Motorized Valve; Controls UF drain.
P-301 (backup) Actuator UF feed Pump; Pumps water from UF feed water tank to RO feed water tank via UF filtration.
P-302 Actuator UF feed Pump; Pumps water from UF feed water tank to RO feed water tank via UF filtration.
AIT-401 Sensor RO hardness meter of water.
AIT-402 Sensor ORP meter; Controls the NaHSO3dosing(P203), NaOCl dosing (P205).
FIT-401 Sensor Flow Transmitter ; Controls the UV dechlorinator.
LIT-401 Actuator Level Transmitter; RO feed water tank level.
P-401 (backup) Actuator Pump; Pumps water from RO feed tank to UV dechlorinator.
P-402 Actuator Pump; Pumps water from RO feed tank to UV dechlorinator.
P-403 Actuator Sodium bi-sulphate pump.
P-404 (backup) Actuator Sodium bi-sulphate pump.
UV-401 Actuator Dechlorinator; Removes chlorine from water.
AIT-501 Sensor RO pH analyser; Measures HCl level.
AIT-502 Sensor RO feed ORP analyser; Measures NaOCl level.
AIT-503 Sensor RO feed conductivity analyser; Measures NaCl level.
AIT-504 Sensor RO permeate conductivity analyser; Measures NaCl level.
FIT-501 Sensor Flow meter; RO membrane inlet flow meter.
FIT-502 Sensor Flow meter; RO Permeate flow meter.
FIT-503 Sensor Flow meter; RO Reject flow meter.
FIT-504 Sensor Flow meter; RO re-circulation flow meter.
P-501 Actuator Pump; Pumps dechlorinated water to RO.
P-502 (backup) Actuator Pump; Pumps dechlorinated water to RO.
PIT-501 Sensor Pressure meter; RO feed pressure.
PIT-502 Sensor Pressure meter; RO permeate pressure.
PIT-503 Sensor Pressure meter;RO reject pressure.
FIT-601 Sensor Flow meter; UF Backwash flow meter.
P-601 Actuator Pump; Pumps water from RO permeate tank to raw water tank (not used for data collection).
P-602 Actuator Pump; Pumps water from UF back wash tank to UF filter to clean the membrane.

Table 17: SWaT feature description.
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